CHAROLAIS BREEDPLAN

Understanding the EBVs, Selection Indices and Accuracy

EBVs

An animal's breeding value is its genetic merit, half of which will be passed on to its progeny.  While we will never know the exact breeding value, for performance traits it is possible to make good estimates.  These estimates are called Estimated Breeding Values (EBVs). 

In the calculation of EBVs, the performance of individual animals within a contemporary group is directly compared to the average of other animals in that group.  A contemporary group consists of animals of the same sex and age class within a herd, run under the same management conditions and treated equally.  Indirect comparisons are made between animals reared in different contemporary groups, through the use of pedigree links between the groups.

EBVs are expressed in the units of measurement for each particular trait.  They are shown as + ive or - ive differences between an individual animal's genetics and the genetic base to which the animal is compared.  For example, a bull with an EBV of +50 kg for 600-Day Weight is estimated to have genetic merit 50 kg above a value of 0 kg.  Since the breed base is set to an historical benchmark, the average EBVs of animals in each year drop has changed over time as a result of genetic progress within the breed.

The absolute value of any EBV is not critical, but rather the differences in EBVs between animals.  Particular animals should be viewed as being "above or below breed average" for a particular trait. 

Whilst EBVs provide the best basis for the comparison of the genetic merit of animals reared in different environments and management conditions, they can only be used to compare animals analysed within the same analysis.  Consequently, Charolais BREEDPLAN EBVs cannot be validly compared with EBVs for any other breed.

Although EBVs provide an estimate of an animal’s genetic merit for a range of production traits, they do not provide information for all of the traits that must be considered during selection of functional animals.  In all situations, EBVs should be used in conjunction with visual assessment for other traits of importance (such as structural soundness, temperament, fertility etc).  A recommended practice is to firstly select breeding stock based on EBVs and to then select from this group to ensure that the final selections are otherwise acceptable.

EBVs are published for a range of traits covering fertility, calving ease, milking ability, growth, carcase merit and docility.  When using EBVs to assist in selection decisions it is important to achieve a balance between the different groups of traits and to place emphasis on those traits that are important to the particular herd, markets and environment.  One of the advantages of having a comprehensive range of EBVs is that it is possible to avoid extremes in particular traits and select for animals with balanced overall performance.

Calving Ease EBVs (%) are based on calving difficulty scores, birth weights and gestation length information.  More positive EBVs are favourable and indicate easier calving.

 - CE % Dir = Direct Calving Ease - The EBV for direct calving ease indicates the influence of the sire on calving ease in purebred females calving at two years of age.

 - CE % Daughters = Daughters' Calving Ease - The EBV for daughters' calving ease indicates how easily that sire's daughters will calve at two years of age.

Gestation Length EBV (days) is an estimate of the time from conception to the birth of the calf and is based on Artificial Insemination and hand mating records.  Lower (negative) Gestation Length EBVs indicate shorter gestation length and therefore easier calving and increased growth after birth.

Birth Weight EBV (kg) is based on the measured birth weight of progeny, adjusted for dam age.  The lower the value the lighter the calf at birth and the lower the likelihood of a difficult birth.  This is particularly important when selecting sires for use over heifers.

200-Day Growth EBV (kg) is calculated from the weight of progeny taken between 80 and 300 days of age.  Values are adjusted to 200 days and for age of dam.  This EBV is the best single estimate of an animal's genetic merit for growth to early ages.

400-Day Weight EBV (kg) is calculated from the weight of progeny taken between 301 and 500 days of age, adjusted to 400 days and for age of dam.  This EBV is the best single estimate of an animal's genetic merit for yearling weight.

600-Day Weight EBV (kg) is calculated from the weight of progeny taken between 501 and 900 days of age, adjusted to 600 days and for age of dam.  This EBV is the best single estimate of an animal's genetic merit for growth beyond yearling age.

Mature Cow Weight EBV (kg) is based on the cow weight when the calf is weighed for weaning, adjusted to 5 years of age.  This EBV is an estimate of the genetic difference in cow weight at 5 years of age and is an indicator of growth at later ages and potential feed maintenance requirements of the females in the breeding herd.  Steer breeders wishing to grow animals out to a larger weight may also use the Mature Cow Weight EBV.

Milk EBV (kg) is an estimate of an animal's milking ability.  For sires, this EBV indicates the effect of the daughter's milking ability, inherited from the sire, on the 200-day weights of her calves.  For dams, it indicates her milking ability.

Scrotal Size EBV (cm) is calculated from the circumference of the scrotum taken between 300 and 700 days of age and adjusted to 400 days of age.  This EBV is an estimate of an animal's genetic merit for scrotal size.  There is also a small negative correlation with age of puberty in female progeny and therefore selection for increased scrotal size will result in reduced age at calving of female progeny.

Carcase Weight EBV (kg) is based on abattoir carcase records and is an indicator of the genetic differences in carcase weight at the standard age of 650 days.

Eye Muscle Area EBV (sq cm) indicates genetic differences in eye muscle area at the 12/13th rib site of a 300kg dressed carcase.  More positive EBVs indicate better muscling on animals.  Sires with relatively higher Eye Muscle Area EBVs are expected to produce better muscled and higher percentage yielding progeny at the same carcase weight than will sires with lower Eye Muscle Area EBVs.

Rump Fat EBV (mm) is an indicator of the genetic differences between animals in fat depth at the p8 rump site in a standard 300kg steer carcase.  Sires with low, or negative, fat EBV are expected to produce leaner progeny at any particular carcase weight than will sires with higher EBVs.

Rib Fat EBV (mm) is an indicator of the genetic differences between animals in fat depth at the 12/13th rib site in a standard 300kg steer carcase.  More positive or more negative Rib Fat EBVs may be more favourable, depending on your breeding goals relating to the finishing ability of your animals.

Retail Beef Yield EBV (%) indicates genetic differences between animals for retail yield percentage in a standard 300kg steer carcase.  Sires with larger EBVs are expected to produce progeny with higher yielding carcases.

Intramuscular Fat EBV (%) is an estimate of the genetic difference in the percentage of intramuscular fat (marbling) at the 12/13th rib site in a 300 kg steer carcase.  Depending on market targets, larger more positive values are generally more favourable.  

Selection Indices

Index values are reported as EBVs, in units of relative earning capacity ($’s) for a given market.  They reflect both the short-term profit generated by a sire through the sale of his progeny, and the longer-term profit generated by his daughters in a self-replacing cow herd.  A selection index combines the EBVs with economic information (costs and returns) for specific market and production systems to rank animals based on relative profit values.  Note that different types of animals can give similar profit values, so consideration should be given to both the index and the component EBVs when selecting animals for a particular production system.  More information is available on selecting animals using a selection index.

The Index values are derived using BreedObject technology.  More information is available from the BreedObject web site.

Charolais selection indices are calculated for two standard market specifications – Domestic Terminal and Northern Maternal - and are designed to optimise profit outcomes from commercial production systems.  More information is available on Charolais Selection Indices.

Domestic Terminal Index ($) - Estimates the genetic differences between animals in net profitability per cow joined for a typical commercial herd where Charolais bulls are joined with a British breed cow base (e.g. Angus) targeting the domestic trade.  This index assumes all progeny will be marketed with steers finished in the feedlot for 90 days and weighing 450 kg (250 kg HSCW and 7 mm P8 fat depth) when marketed at 12 months.  Heifers will be in the feedlot for 75 days and weigh 430 kg (230 kg HSCW and 9 mm P8 fat depth) at 12 months.  In response to industry feedback, positive emphasis has been placed on finishing ability.

Northern Maternal Index ($) - Estimates the genetic differences between animals in net profitability per cow joined for a typical commercial herd where Charolais bulls are joined with Bos indicus cows in Northern Australia targeting the grass fed Jap Ox market.  Selected heifers are retained for breeding and so maternal traits are of importance.  Steers target 650 kg live weight (360 kg HSCW and 12 mm P8 fat depth) and heifers 630 kg (340 kg HSCW and 14 mm P8 fat depth), at 26 months of age.  In response to industry feedback; positive emphasis has been placed on finishing ability.

Accuracy

Accuracy (%) is based on the amount of performance information available on the animal and its close relatives - particularly the number of progeny analysed.  Accuracy is also based on the heritability of the trait and the genetic correlations with other recorded traits.  Hence accuracy indicates the "confidence level" of the EBV.  The higher the accuracy value the lower the likelihood of change in the animal's EBV as more information is analysed for that animal or its relatives.  Even though an EBV with a low accuracy may change in the future, it is still the best estimate of an animal's genetic merit for that trait.  As more information becomes available, an EBV is just as likely to increase in value, as it is to decrease.

Accuracy values range from 0-99%.  The following guide is given for interpreting accuracy:

Accuracy range

 Interpretation

less than 50%

 Low accuracy.  EBVs are preliminary and could change substantially as more performance information becomes available.

 50-74%

 Medium accuracy, usually based on the animal's own records and pedigree.

 75-90%

 Medium-high accuracy.  Some progeny information included.  EBVs may change with addition of more progeny data.

 more than 90%

 High accuracy estimate of the animal's true breeding value.

As a rule, animals should be compared on EBVs regardless of accuracy.  However, where two animals have similar EBVs the one with higher accuracy could be the safer choice, assuming other factors are equal. 

More information on accuracy is available from the BREEDPLAN Help Centre.

More information is available from the BREEDPLAN web site or by contacting the Charolais Association or Charolais BREEDPLAN. 

Acknowledgments and Disclaimer

BREEDPLAN results are calculated using the beef genetic evaluation analytical software developed by the Animal Genetics and Breeding Unit and Meat & Livestock Australia Limited.

Information analysed in BREEDPLAN evaluations, including but not limited to pedigree, performance and DNA information, is based on data supplied by clients and/or third parties.  The Agricultural Business Research Institute (ABRI) does not oversee or audit the collection of the data.  Whilst every effort is made to ensure the accuracy of the information, the ABRI, their officers and employees assume no responsibility for its content, use or interpretation.

Estimated Breeding Values can only be directly compared to other EBVs calculated in the same analysis.